int_{el}®

Technical Product Summary

Classic/PCI i486TM Baby-AT Motherboard

Models: BP4S33AT BP4D33AT BP4D266AT

Preliminary Version 0.1 April, 1993

Order Number PRELIMINARY

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear in this document nor does it make a commitment to update the information contained herein.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.

Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and may only be used to identify Intel products:

376тм i750® AboveTM i860TM ActionMedia® i960® **BITBUS**TM Intel287TM Code BuilderTM Intel386TM DeskWareTM Intel387TM Digital StudioTM Intel486TM DVI® Intel487TM $\mathsf{EtherExpress}^{\scriptscriptstyle\mathsf{TM}}$ **Intel**® **ETOX**TM intel inside.TM $ExCA^{TM}$ Intellec® Exchange and GoTM **iPSC**® FaxBACKTM **iRMX**® $FlashFile^{{\rm TM}}$ iSBC® $iSBX^{TM}$ Grand ChallengeTM $iWARP^{TM}$ ICE^{TM} LANDeskTM $iLBX^{TM}$ LANPrint® InboardTM LANProtectTM LANSelect® i287TM i386TM LANShell® i387TM LANSightTM i486TM LANSpace®

 $MAPNET^{TM}$ MatchedTM MCS® Media MailTM $NetPort^{TM}$ NetSentryTM OpenNETTM $OverDrive^{TM}$ ParagonTM PentiumTM ProSolverTM READY-LANTM Reference Point® RMX/80TM RxServerTM SatisFAXtion® SnapIn 386™ Storage BrokerTM SuperTunedTM

The Computer Inside.™
TokenExpress™
Visual Edge™
WYPIWYF®
IntelTechDirect™

MDS is an ordering code only and is not used as a product name or trademark. MDS is a registered trademark of Mohawk Data Sciences Corporation.

LANSpool®

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark or products.

TRADEMARK ACKNOWLEDGMENTS

i487TM

ATI is a trademark of ATI Technologies Inc.

AutoCAD is a trademark of Autodesk Inc.

BAPCo and Sysmark92 are trademarks of the Business Applications Performance Corporation.

Cadvance is a trademark of ISICAD Inc.

Centronics is a trademark of Centronics Data Computer Corp.

IBM, MDA, MCGA, EGA, VGA, Personal System/2, PS/2, PC/XT and PC/AT are trademarks of International Business Machines.

Microsoft, MS-DOS, OS/2, Xenix and Windows are trademarks of Microsoft Corporation.

Novell is the trademark of Novell, Inc.

PolySwitch is a registered trademark of Raychem Corporation.

SCO is a trademark of Santa Cruz Operations, Inc.

SPEC, SPECratio, SPECint92 and SPECfp92 are trademarks of the Standard Performance Evaluation Corporation.

UNIX is a trademark of AT&T Bell Laboratories.

Western Digital is a trademark of Western Digital Corp.

All other trademarks are the property of their respective owners.

Classic/PCI i486 Baby-AT Motherboard Preliminary Technical Product Summary Revision 0.1

Table of Contents

Introduction	4
Baby-AT Form Factor	
Board Level Features	
CPU	
Performance Upgrade	
Second Level Cache	
System BIOS	
PCI Auto-configuration Capability	
Setup Utility	
FLASH Implementation	
Upgrade Utility	
Flash User Area	
Keyboard (and Mouse) Interface	
System Memory	
Core Chip Set	
82424TX Cache/DRAM/Controller (CDC)	
82423TX Data Path Unit (DPU)	
82378IB System I/O (SIO)	8
Expansion Slots	
SMC 37C663 Super I/O Controller	
Dallas DS12887 Real Time Clock, CMOS RAM and Battery	
Front Panel Connectors	
Security	
BIOS Password	
Setup Enable Jumper	9
System Integration Features	
Back panel Connections	
Power Supply	
Appendices	
Appendix A – User-Installable Upgrades	
System Memory	
Performance Upgrade	
Qualified DRAM SIMMs	
Appendix B – Jumpers	
Appendix C – BIOS Setup Options	
Appendix D – BIOS Recovery	
••	10
Using the Ungrade Utility	15
Using the Upgrade Utility	
Recovery Mode	15
Recovery Mode	15 16
Recovery Mode	15 16 17
Recovery Mode	15 16 17 18
Recovery Mode	15 16 17 18 19
Recovery Mode	15 16 17 18 19
Recovery Mode Appendix E – Memory Map Appendix F – I/O Map Appendix G – Board Interrupts & DMA Appendix H – Connectors AT Style Keyboard Port (J8L1 = Keyboard) Optional PS/2 Style Keyboard, Mouse Ports (J8L2 = Keyboard, J9L1 = Mouse)	15 16 17 18 19 19
Recovery Mode Appendix E – Memory Map Appendix F – I/O Map Appendix G – Board Interrupts & DMA Appendix H – Connectors AT Style Keyboard Port (J8L1 = Keyboard) Optional PS/2 Style Keyboard, Mouse Ports (J8L2 = Keyboard, J9L1 = Mouse) Turbo LED Connector (J1A1)	15 16 17 18 19 19 19
Recovery Mode Appendix E – Memory Map Appendix F – I/O Map Appendix G – Board Interrupts & DMA Appendix H – Connectors AT Style Keyboard Port (J8L1 = Keyboard) Optional PS/2 Style Keyboard, Mouse Ports (J8L2 = Keyboard, J9L1 = Mouse) Turbo LED Connector (J1A1) Hard Drive LED Connector (J1A2)	15 16 17 18 19 19 19
Recovery Mode Appendix E – Memory Map Appendix F – I/O Map Appendix G – Board Interrupts & DMA Appendix H – Connectors AT Style Keyboard Port (J8L1 = Keyboard) Optional PS/2 Style Keyboard, Mouse Ports (J8L2 = Keyboard, J9L1 = Mouse) Turbo LED Connector (J1A1)	15 16 17 18 19 19 19 19
Recovery Mode Appendix E – Memory Map Appendix F – I/O Map Appendix G – Board Interrupts & DMA Appendix H – Connectors AT Style Keyboard Port (J8L1 = Keyboard) Optional PS/2 Style Keyboard, Mouse Ports (J8L2 = Keyboard, J9L1 = Mouse) Turbo LED Connector (J1A1) Hard Drive LED Connector (J1A2) Key lock/Power LED Connector (J1B1)	15161718191919191919
Recovery Mode Appendix E – Memory Map Appendix F – I/O Map Appendix G – Board Interrupts & DMA Appendix H – Connectors AT Style Keyboard Port (J8L1 = Keyboard) Optional PS/2 Style Keyboard, Mouse Ports (J8L2 = Keyboard, J9L1 = Mouse) Turbo LED Connector (J1A1) Hard Drive LED Connector (J1A2) Key lock/Power LED Connector (J1B1) Speaker Connector (J1C1) Turbo Switch Connector (J1C1B) Primary Power Connector (J9K1)	151617181919191919191919
Recovery Mode Appendix E – Memory Map Appendix F – I/O Map Appendix G – Board Interrupts & DMA Appendix H – Connectors AT Style Keyboard Port (J8L1 = Keyboard) Optional PS/2 Style Keyboard, Mouse Ports (J8L2 = Keyboard, J9L1 = Mouse) Turbo LED Connector (J1A1) Hard Drive LED Connector (J1A2) Key lock/Power LED Connector (J1B1) Speaker Connector (J1C1) Turbo Switch Connector (J1C1B) Primary Power Connector (J9K1) Auxiliary (3.3V) Power Connector (J4H1)	151617181919191919191919191919191919
Recovery Mode Appendix E – Memory Map Appendix F – I/O Map Appendix G – Board Interrupts & DMA Appendix H – Connectors AT Style Keyboard Port (J8L1 = Keyboard) Optional PS/2 Style Keyboard, Mouse Ports (J8L2 = Keyboard, J9L1 = Mouse) Turbo LED Connector (J1A1) Hard Drive LED Connector (J1A2) Key lock/Power LED Connector (J1B1) Speaker Connector (J1C1) Turbo Switch Connector (J1C1B) Primary Power Connector (J9K1) Auxiliary (3.3V) Power Connector (J4H1) Parallel Port (J7J1)	1516171819191919191919191919191919
Recovery Mode Appendix E – Memory Map Appendix F – I/O Map Appendix G – Board Interrupts & DMA Appendix H – Connectors AT Style Keyboard Port (J8L1 = Keyboard) Optional PS/2 Style Keyboard, Mouse Ports (J8L2 = Keyboard, J9L1 = Mouse) Turbo LED Connector (J1A1) Hard Drive LED Connector (J1A2) Key lock/Power LED Connector (J1B1) Speaker Connector (J1C1) Turbo Switch Connector (J1C1B) Primary Power Connector (J9K1) Auxiliary (3.3V) Power Connector (J4H1)	151617181919191919191919191919

Floppy Connector (J9F2)	21
IDE Connector (J9F3)	21
ISA Connector (J6G2, J6G1, J5G1, J4G1, J1G1)	
PCI Connector (J3H1,J2H1,J1H1)	23
Appendix I – Baby-AT Chassis Suppliers	25
Appendix J – Environmental Standards	26
Appendix K – Reliability Data	27
Appendix L – Software Driver Support	28
Appendix M – Qualified Peripherals	29
Appendix N – Customer Support	30
iPAN (Intel Product Assistance Network)	
iPUB (Intel Product Update Bulletin)	30
iPALS (Intel Phone Action Line Support)	
FaxBack TM	30
Appendix O – Physical Dimensions	31
Board	
Appendix P – Product Codes	32
Boards	
Accessories	
Documentation	32

Introduction

The Classic/PCI i486 Baby-AT Motherboard delivers excellent, cost effective performance in a very affordable i486[™] platform. A wide range of CPU offerings provides immediate performance flexibility, and a single 238-pin blue OverDrive[™] Ready ZIF (Zero Insertion Force) processor socket allows upgrades to higher performance in the future. Additionally, by incorporating a second level, high performance cache and four SIMM sites for memory expansion to 128 MB, five ISA expansion connectors and three PCI connectors, the Classic/PCI i486 Baby-AT Motherboard is ideally featured for expandable, performance sensitive desktop applications. The Classic/PCI i486 Baby-AT Motherboard will excel in high end i486 Processor desktop PCs running existing compatible applications.

An easy upgrade path to higher CPU performance is built into the Classic/PCI i486 Baby-AT Motherboard. The processor socket accepts either an i487™SX to enhance performance with numeric intensive applications, or an OverDrive Processor, Intel's upgrade component that doubles the speed of all i486 internal processes. Support for the next generation OverDrive Processor, based on the Pentium™ CPU, protects today's investment in the Classic/PCI i486 Baby-AT Motherboard.

The mini-Baby-AT board – with i486 CPU, cache, and integrated I/O – is the smallest PCI-based motherboard solution on the market today that is upgrade able to an OverDrive processor based on Pentium CPU technology.

BABY-AT FORM FACTOR

The Classic/PCI i486 Baby-AT motherboard matches the Baby-AT standards well established in the PC industry, while reducing the size from the full length (13") form factor. This Baby-AT industry standard specifies the maximum board size, board mounting locations, and location for the keyboard connector, as well as expansion slot placement. The Classic/PCI i486 Baby-AT meets all of these requirements while adding PCI expansion possibilities. Figure 1 illustrates the Baby-AT form factor. A list of several chassis suppliers supporting the Baby-AT standard is included in Appendix I.

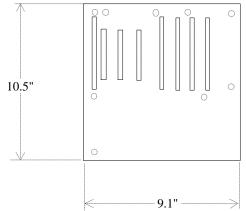


Figure 1. Classic/PCI i486 Baby-AT Motherboard dimensions.

Board Level Features

CPU

The Classic/PCI i486 Baby-AT motherboard has a wide price/performance range to meet a variety of customer needs. Four base CPU options are available:

- an i486 SX running at 33 MHz;
- an i486 DX at 33 MHz;
- an i486 DX2 at 66 MHz; or
- a next generation i486 processor operating at 3.3V internally, and 33 MHz bus speed

The Classic/PCI i486 Baby-AT motherboard supports all of the functionality of the i486. Common features of the CPU include backward compatibility with the 8086, 80286, and i386™ CPUs, burst mode bus cycles, and an on-chip 8 KB cache. The cache is 4-way set associative, uses a write-through policy, and can be disabled via software.

The i486 DX CPU contains an on-chip numeric coprocessor to increase the speed of floating point operations. This coprocessor is backward code-compatible with i387™ DX and i387 SX math coprocessors and complies with ANSI/IEEE standard 754-1985. The i486 SX does not include the numeric coprocessor. The i486 DX2 incorporates clock-doubling technology developed by Intel to offer the highest CPU performance available today.

PERFORMANCE UPGRADE

The Classic/PCI i486 Baby-AT motherboard incorporates a single 238-pin processor socket allowing easy upgrades to CPU performance. All Classic/PCI i486 Baby-AT motherboards can be upgraded with an OverDrive Processor – including future OverDrive Processors based on the Pentium CPU architecture. These upgrades will provide significantly higher CPU performance and numeric capability. In addition, systems with a i486 SX/33 CPU can improve floating point performance by installing an i487 SX/33 in place of the CPU. When replacing an i486 SX/33 CPU with an OverDrive Processor no jumper change are required; just power up and go!

SECOND LEVEL CACHE

In addition to the i486 CPU's internal cache, the Classic/PCI i486 Baby-AT motherboard was designed with a second level cache using industry-standard SRAM. The 82424TX CDC includes a direct-mapped, write-back cache controller. The motherboard includes four 32K x 8 20ns cache SRAM devices for a total of 128 KB cache memory.

SYSTEM BIOS

The Classic/PCI i486 Baby-AT Motherboard uses American Megatrends Incorporated (AMI) i486 CPU ROM BIOS, which provides ISA compatibility. The system BIOS is stored in FLASH EEPROM, providing easy upgradability of program code space from a floppy disk or a file downloaded from a BBS; BIOS upgrades will be available for download from iPAN, the electronic bulletin board service of IntelTechDirectTM. In addition to the AMI BIOS, the FLASH memory also contains the PCI Auto-configuration utility, SETUP utility, Power-On Self-Tests (POST), and update recovery code. For improved system performance, the Classic/PCI i486 Baby-AT Motherboard supports system BIOS shadowing, allowing the BIOS to execute from 32-bit on-board write-protected DRAM instead of the slower 8-bit FLASH devices. The Classic/PCI i486 Baby-AT BIOS sign-on during POST is along the bottom of the screen, and contains information which identifies revision and type of BIOS. On the lower left is a four digit code which denotes revision; first production units will display 0101, and as updates occur will roll the "minor revision number", i.e. 0102. BIOS level and board identifier code is contained on the lower right side, and will be P00.AQ0 for the Classic/PCI i486 Baby-AT motherboard. As a note, A01 denotes Alpha revision 01, and B01 denotes Beta revision 01.

Further information on BIOS functions can be found in the IBM PS/2 and Personal Computer BIOS Technical Reference published by IBM, and the ISA and EISA Hi-Flex AMIBIOS Technical Reference published by AMI and available at most technical bookstores.

PCI AUTO-CONFIGURATION CAPABILITY

The PCI Auto-configuration feature provides a new level of user satisfaction. Simply plug a PCI add-in card into an empty connector and turn the system on. The BIOS automatically configures interrupts, DMA channels, I/O space, etc. This eliminates the requirement for adapter card jumper changes due to resource conflicts, and provides unrivaled ease of use in a PC.

The auto-configuration routine operates in conjunction with an ISA configuration utility. This utility enables the user to specify the ISA options used, and ties into the PCI configuration software transparently to provide seamless add-in card installation.

SETUP UTILITY

Classic/PCI i486 Baby-AT incorporates many commonly used system setup features into the FLASH EEPROM. The BIOS SETUP Program has been enhanced and provides several new options to take advantage of the Classic/PCI i486 Baby-AT Motherboard's new features. New options include:

- Auto configuration of IDE hard disks.
- Support for four IDE disk drives (primary and secondary)
- Serial Port 1 -- Enable/Disable
- Serial Port 2 -- Enable/Disable
- Parallel Port -- Enable/Disable, Bi-directional/Output only
- Cache/Shadow Memory Option -- Provides the user the option to assign a block of addresses below the 1 MB boundary as non-shadowed, non-cached. Primarily used for expansion card ROM which causes timing issues when shadowed and cached.
- ISA interrupts Allows ISA interrupts IRQ9, IRQ10, IRQ15 to be assigned to add-in ISA adapters, thereby informing the PCI configuration utility which interrupts not to use.

The setup utility is accessible only during the Power-On Self Test by pressing the <F1> key anytime after the POST memory test has begun and before boot begins. For security purposes, access to SETUP can be disabled via a jumper on the motherboard. The ROM-based setup allows the system configuration to be modified without opening the system for most basic changes. Setup options are detailed in the Appendices.

FLASH IMPLEMENTATION

The Intel 28F001BXT 1 Mb FLASH component is organized as 128K x 8 (128 KB). The Flash device is divided into five areas, as described in Table 2.

System .	Address	FLASH Memory Area
F0000H	FFFFFH	64 KB Main BIOS
EE000H	EFFFFH	8 KB Boot Block (Not FLASH erasable)
ED000H	EDFFFH	4 KB Parameter Block (used for PCI)
EC000H	ECFFFH	4 KB Flash User Area
E0000H	EBFFFH	System BIOS

Table 1. Flash Memory Organization

The FLASH device resides in system memory in two 64 KB segments starting at E0000H, and is distributed in two different organizations, depending on the mode of operation. In *Normal Mode* address line A16 is inverted, switching the E000H and F000H segments so that the BIOS is organized as shown in the system address column above. *Recovery mode* removes the inversion on address line A16, swapping the E000H and F000H segments so that the 8 KB boot block resides at FE000H where the i486 expects the bootstrap loader to exist. This mode is only necessary in the unlikely event that a BIOS upgrade procedure is interrupted, causing the BIOS area to be left in an unusable state. For information on recovering the BIOS in the event of a catastrophic failure, refer to the Appendices.

UPGRADE UTILITY

FLASH memory brings new opportunities for distributing BIOS upgrades. Installing a new version of BIOS will no longer require removal of the system cover and the replacement of EPROM's. Instead, the upgrade can be done completely from a floppy diskette. Easy access to BIOS upgrades will be available through download able files on the iPAN bulletin board.

Security is provided in two ways. First, the FLASH upgrade utility insures the upgrade BIOS matches the target system to prevent accidentally installing a BIOS for a different type of system. Second, security to prevent unauthorized changes to the BIOS is provided via a write protect jumper on the motherboard. The default setting is to allow BIOS upgrades. A recovery jumper is provided to recover from the unlikely event of an unsuccessful BIOS upgrade. It forces the ROM decode to access a 32 KB block of write protected code in the FLASH device that facilitates recovery. The default value for this jumper (*RV*) is for "normal" mode (note: this jumper is not changed during normal BIOS updates, it is used only if a problem is encountered).

The disk-based FLASH upgrade utility (FMUP.EXE; download able from iPAN) has three options for BIOS upgrades:

- The FLASH BIOS can be updated from a file on a disk;
- The current BIOS code can be copied from the FLASH EEPROM to a disk file as a backup in the event that an upgrade cannot be successfully completed; and
- The BIOS in the FLASH device can be compared with a disk file to ensure the system has the correct BIOS version.

FLASH USER AREA

Classic/PCI i486 Baby-AT supports a 4 KB programmable Flash User area located at ED000H-EDFFFH. A programmer may use this area to display a customized message or to execute a small program. The Classic/PCI i486 Baby-AT BIOS accesses the user area just after completing the POST (Power-On Self-Test) if the setup option is enabled. The flash user area may be updated by running the FMUP.EXE utility, which expects the update files to have a .USR extension. Sample programs and instructions are in the file CLSUSER.ZIP on the iPAN bulletin board.

KEYBOARD (AND MOUSE) INTERFACE

An Intel 8742 surface mount micro controller contains the Phoenix Technologies' compatible keyboard/mouse controller code. An AT style keyboard connector is located on the back panel side of the motherboard. The 5V line on this connector is protected with a PolySwitch circuit which acts much like a fuse except that it re-establishes the connection after an over-current condition is removed. While the PolySwitch eliminates the possibility of having to replace a fuse, care should be taken to turn the system power off before installing or removing a keyboard. As a manufacturing option, customers whose chassis will allow two PS/2 style connectors, one for mouse and one for keyboard, can be supported by offering PS/2 configuration instead of AT. The 8742 micro controller code supports Power-On/Reset (POR), network, and keyboard password protection. Network and keyboard passwords require programs contained on the utility disk that ships with the system, the POR password is set via the SETUP program. In addition, the keyboard controller provides for the following "HOT" key sequences:

- CTRL-ALT-DEL: System software reset. This sequence performs a software reset of the system by jumping to the beginning of the BIOS code and running the POST operation, excluding memory tests.
- <TBD 1> and <TBD 2>: Turbo mode selection. <TBD 1> sets the system for de-turbo mode (emulation of an 8 MHz 80286 CPU using wait states) and <TBD 2> sets the system for turbo mode (its normal operation at 33 MHz). Changing the Turbo mode may be prohibited by an operating system or application software.

SYSTEM MEMORY

The Classic/PCI i486 Baby-AT Motherboard provides four 36-bit wide SIMM sites for memory expansion with single/dual sided SIMM modules. The memory array is controlled by the Intel 82424TX CDC, and data buffering is provided by an Intel 82423TX DPU. The four SIMM sites support 256K x 36, 512K x 36, 1M x 36, 2M x 36, 4M x 36 and 8M x 36 SIMM modules. Minimum memory size is 2 MB, and maximum memory size, using four 8M x 36 SIMM modules, is 128 MB.

Memory is always interleaved in two banks; therefore the SIMM sites must be stuffed in pairs. Memory timing is designed for 70ns fast page devices, faster DRAMs will operate in the board but will provide no performance improvement. Parity generation/checking is provided for each 8-bit byte.

SIMMs may be installed in combinations of two or four modules; each two SIMMs within an interleaved bank must be of the same memory size and type (see the Appendix for a complete list of combinations). There are no jumper settings required for the memory size configuration, the System BIOS automatically sizes memory and initializes the 82424TX DRAM controller for appropriate DRAM configuration.

CORE CHIP SET

The core chip set is the Intel Saturn chip set, consisting of one 82424TX Cache/DRAM Controller (CDC), one 82423TX Data Path Unit (DPU) device, and one 82378IB System I/O (SIO) bridge chip. This document will outline the general functionality, for more detailed information refer to the data sheet for the 82420 PCISet from Intel. The Saturn chip set provides the following functions:

- CPU reset control
- CPU L1 cache control
- CPU burst mode control
- CPU interface control
- Integrated L2 write-back cache controller with tag comparator
- Page-mode DRAM controller

- Burst memory read/write control logic
- Data bus conversion to PCI
- Parity generation/detection to memory
- AT-BUS direction control
- Chip select for keyboard controller and RTC
- Speaker control
- NMI logic
- Floating-point coprocessor interface
- Keyboard reset and gate A20 emulation logic
- DMA controller
- Interrupt controller
- Counters/Timers

82424TX CACHE/DRAM/CONTROLLER (CDC)

The 82424TX provides all control signals necessary to drive the DRAM array, including multiplexed address signals. It also controls system access to memory and generates snoop controls to maintain cache coherency.

82423TX DATA PATH UNIT (DPU)

The 82423TX provides data bus buffering and dual port buffering to the memory array. Controlled by the 82424TX, the 82423TX device adds one load to the PCI bus and performs all the necessary byte and word swapping required. Memory and I/O write buffers are included in these devices.

82378IB SYSTEM I/O (SIO)

The 82378IB integrates seven 32-bit DMA channels, five 16-bit timer/counters, two eight-channel interrupt controllers, NMI logic, refresh address generation, and PCI/ISA bus arbitration circuitry together onto the same device.

EXPANSION SLOTS

The Classic/PCI i486 Baby-AT Motherboard contains support for up to seven populated expansion slots, offering ISA and PCI connectors. These connectors include four ISA bus expansion slots, and two PCI expansion slots; the seventh slot uses both an ISA connector and a PCI connector side by side, and can accept either an ISA or PCI adapter board but not both together. The expansion cards are oriented perpendicular to the motherboard. All three PCI expansion slots accept PCI master cards, fully supporting the PCI specification.

SMC 37C663 SUPER I/O CONTROLLER

Control for the integrated serial ports, parallel port, floppy drive and IDE hard drive interface is incorporated into a single component, the SMC FDC37C663. This component provides:

- Two NS16C552 compatible UARTs (with FIFO support)
- IBM and Centronics compatible bi-directional parallel port controller
- Industry standard floppy controller (with 2.88 MB floppy support)
- IDE hard disk decode and chip select

Header connectors are available near the back of the board for cabling these options. The serial ports can be enabled as COM1 and COM2 or disabled. The parallel port can be enabled via the SETUP program as LPT1 or disabled, and can be set as bi-directional or output only when enabled.

DALLAS DS12887 REAL TIME CLOCK, CMOS RAM AND BATTERY

The Real Time Clock (RTC) is implemented using a Dallas DS12887 device. The DS12887 is accurate to within 13 minutes/year and requires no external support (the battery and oscillator are integrated into the device). The component is soldered into the board (the internal battery has an estimated lifetime of ten years).

The RTC can be set via the BIOS SETUP Program. CMOS memory supports the standard 128-byte battery-backed RAM, fourteen bytes for clock and control registers, and 114 bytes of general purpose non-volatile CMOS RAM. All CMOS RAM is reserved for BIOS use. The CMOS RAM can be set to specific values or cleared to the system default values using the BIOS SETUP program. Also, the CMOS RAM values can be cleared to the system defaults by using a hardware jumper. The appendices contain a list of jumper configurations.

FRONT PANEL CONNECTORS

A connector (J1C1) is provided for installing a speaker. The speaker provides error beep code information during the Power-On Self Test if the system cannot use the video interface. The Classic/PCI i486 Baby-AT product guide contains beep and error code information.

Connectors J1B2, J1B1, J1C1B, and J1A2, J1A1 supply front panel connections to Reset, Key lock, and Turbo switches, and hard disk and turbo LEDs, respectively.

SECURITY

Security features are incorporated into the Classic/PCI i486 Baby-AT system BIOS.

BIOS PASSWORD

A BIOS password feature provides security during the boot process. A password can be entered using the Setup utility and must be re-entered prior to disk boot each time the system is reset. The password can be changed at the password prompt by entering <old password> / <new password> / <new password> <enter>. The password also can be cleared by entering <old password> / <enter>. If the password is forgotten, it can be cleared by turning off the system and setting jumper PW to the right. After the system has finished the Power-On Self Test, turn the system off and reset jumper PW to the left. This allows the user access to the password feature, but with the forgotten password cleared.

SETUP ENABLE JUMPER

A jumper on the baseboard controls access to the BIOS Setup utility. By setting jumper *SE* to the right, the user is prevented from accessing the Setup utility during the Power-On Self Test or at any other time.

System Integration Features

BACK PANEL CONNECTIONS

The back panel provides external access to the keyboard controller integrated on the Classic/PCI i486 Baby-AT motherboard. Figure 4 shows the back panel connections.

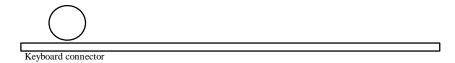


Figure 2. Classic/PCI i486 Baby-AT Back panel

POWER SUPPLY

The Classic/PCI i486 Baby-AT board could be powered by a 200 watt switch able power supply, providing power for onboard resources, add-in cards, and peripherals.

DC Voltage	Max. Continuous	Peak Current	Minimum
	Current	15 Seconds	Current Load
+5V	18.5A	18.5	2.5A
-5V	0.9A	0.9A	0A
+12V	4.6A	9.5A	0.5A
-12V	0.5A	0.5A	0A

Table 2. Classic/PCI i486 Baby-AT Current Requirements

Table 2 lists the current used by system resources. This information is preliminary and is provided only as a guide for calculating approximate total system power usage with additional resources added.

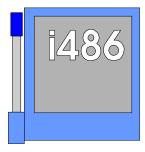
Resource	Typical Power
Classic/PCI i486 Baby-AT baseboard, 16 MB (8 MB in each of two banks), 128K cache	50 Watts
Teac 3½" Floppy drive	1.7 Watts

Table 3. Current Use by System Resources (Preliminary)

Appendices

APPENDIX A - USER-INSTALLABLE UPGRADES

SYSTEM MEMORY


Table A-1 shows the total system memory based on the listed combinations of SIMMs in the four SIMM sockets.

SIMM 1,2 (Bank 0)	SIMM 3,4 (Bank 1)	Total System Memory
SIMM Type (Amount)	SIMM Type (Amount)	OMP
256K X 36 (1 MB)	Empty	2 MB
256K X 36 (1 MB)	256K X 36 (1 MB)	4 MB
256K X 36 (1 MB)	512K X 36 (2 MB)	6 MB
256K X 36 (1 MB)	1M X 36 (4 MB)	10 MB
256K X 36 (1 MB)	2M X 36 (8 MB)	18 MB
256K X 36 (1 MB)	4M X 36 (16 MB)	34 MB
256K X 36 (1 MB)	8M X 36 (32 MB)	66 MB
512K X 36 (2 MB)	Empty	4 MB
512K X 36 (2 MB)	256K X 36 (1 MB)	6 MB
512K X 36 (2 MB)	512K X 36 (2 MB)	8 MB
512K X 36 (2 MB)	1M X 36 (4 MB)	12 MB
512K X 36 (2 MB)	2M X 36 (8 MB)	20 MB
512K X 36 (2 MB)	4M X 36 (16 MB)	36 MB
512K X 36 (2 MB)	8M X 36 (32 MB)	68 MB
1M X 36 (4 MB)	Empty	8 MB
1M X 36 (4 MB)	256K X 36 (1 MB)	10 MB
1M X 36 (4 MB)	512K X 36 (2 MB)	12 MB
1M X 36 (4 MB)	1M X 36 (4 MB)	16 MB
1M X 36 (4 MB)	2M X 36 (8 MB)	24 MB
1M X 36 (4 MB)	4M X 36 (16 MB)	40 MB
1M X 36 (4 MB)	8M X 36 (32 MB)	72 MB
2M X 36 (8 MB)	Empty	16 MB
2M X 36 (8 MB)	256K X 36 (1 MB)	18 MB
2M X 36 (8 MB)	512K X 36 (2 MB)	20 MB
2M X 36 (8 MB)	1M X 36 (4 MB)	24 MB
2M X 36 (8 MB)	2M X 36 (8 MB)	32 MB
2M X 36 (8 MB)	4M X 36 (16 MB)	48 MB
2M X 36 (8 MB)	8M X 36 (32 MB)	80 MB
4M X 36 (16 MB)	Empty	32 MB
4M X 36 (16 MB)	256K X 36 (1 MB)	34 MB
4M X 36 (16 MB)	512K X 36 (2 MB)	36 MB
4M X 36 (16 MB)	1M X 36 (4 MB)	40 MB
4M X 36 (16 MB)	2M X 36 (8 MB)	48 MB
4M X 36 (16 MB)	4M X 36 (16 MB)	64 MB
4M X 36 (16 MB)	8M X 36 (32 MB)	96 MB
8M X 36 (32 MB)	Empty	64 MB
8M X 36 (32 MB)	256K X 36 (1 MB)	66 MB
8M X 36 (32 MB)	512K X 36 (2 MB)	68 MB
8M X 36 (32 MB)	1M X 36 (4 MB)	72 MB
8M X 36 (32 MB)	2M X 36 (8 MB)	80 MB
8M X 36 (32 MB)	4M X 36 (4 MB)	72 MB
8M X 36 (32 MB)	8M X 36 (8 MB)	128 MB

Table A-1. SIMM Memory Stuffing Options

PERFORMANCE UPGRADE

There are several CPU upgrade paths. If you have an i486 SX processor, you can upgrade it with an Intel487 SX, an i486 DX processor, an i486 DX2, or an OverDrive Processor (including Pentium processor-based OverDrive components, when available). Systems with an i486 DX can be upgraded with i486 DX2 or OverDrive components, and an i486 DX2 can be upgraded with the Pentium CPU-based OverDrive component when available. Upgrading requires removing the current CPU from the 238-pin ZIF socket on the system board. The upgrade processor is plugged into the socket and the system powered up; it's that easy. When the next generation i486 processors which require 3.3V are available, they can also be used to upgrade the board; in this case, Jumpers CPUVCC must be changed to provide the 3.3V to the processor. Intel487 and OverDrive components are available from Intel's Personal Computer Enhancement Division. For the location of the nearest Intel dealer, phone 1 (800) 538-3373.

Just Look for the Blue ZIF Socket!

QUALIFIED DRAM SIMMS

Vendor	Part Number	Size (configuration)
Toshiba	THM361010AS-70	
Toshiba	THM361020AS-70	
Samsung	KMM5361000A-7	
Samsung	KMM5361000B-7	
Hitachi	HB56D136SBS-7A	
Micron	MT9D136M-7	
MTI	Z124MBK36A-70I1	
MTI	Z124MBK36B-70I1	
MTI	Z124MBK36R-70IN	

Table A-2. Sampling of memory DRAM SIMM Vendors

APPENDIX B - JUMPERS

All the configuration jumpers on Classic/PCI i486 Baby-AT motherboard are the three pin, two position type. These sit side by side in a 2x3 jumper block. The jumper description below assumes a particular point of reference in viewing the motherboard. Position the board or system so that the CPU and Cache Rams are at the front nearest you, the Dram SIMMs should be to the right. All functional jumpers have a two-letter indicator as shown in the table. Use these indicators to locate and position the jumpers for your configuration. Some jumpers can be positioned top or bottom, (bottom is towards the front of the board) others left or right.

INDICATOR	DESCRIPTION	DEFAULT
СР	Cache Present Jumper. Jumper to the <i>top position</i> if no Cache Ram is installed in the Board. Jumpered to the <i>bottom</i> indicates Cache Ram is installed in the board.	Bottom
RV	Recovery Jumper. Jumper to top for normal operation Jumper to the bottom for BIOS RECOVERY MODE.	Тор
FI	IDE Paddle Card Jumper . Jumper to <i>top</i> to indicate PCI IDE card is installed in slot J3H1. Jumpered to the <i>bottom</i> for normal on board IDE operation.	Bottom
BW	BIOS Write Jumper . Jumper to the <i>top</i> to disable all writes to Flash EPROM. Jumpered to the <i>bottom</i> allows for Flash EPROM Updates.	Bottom
CPUVCC	CPUVCC Jumpers. These jumpers are not user configurable. Moving them can result in damage to the CPU!! Left is for 5 volt CPU operation. Right is for 3.3 volt operation of 5 volt tolerant CPUs. All four jumpers must be positioned to the same side.	Left
CL	Color/Mono Jumper. Jumpered to the <i>left</i> is for MGA operation. Jumpered to the <i>right</i> is for color graphics adapters.	Right
СМ	Clear CMOS Jumper. Jumper to the <i>left</i> will force CMOS to be CLEARED. Jumper to the <i>right</i> for normal operation.	Right
SE	Setup Enable Jumper. Jumper to the left to allow setup to be enabled during Boot-Up. Jumper to the right to disable setup during Boot-up.	Left
PW	Password Jumper. Jumper to the <i>left</i> for normal operation. Jumper to the <i>right</i> to clear the password that was previously selected.	Left

Table B-1. Classic/PCI i486 Baby-AT Jumper Description



Figure B-1. Classic/PCI i486 Baby-AT Jumper Locations

APPENDIX C - BIOS SETUP OPTIONS

TBD

APPENDIX D - BIOS RECOVERY

The Classic/PCI i486 Baby-AT incorporates an AMI system BIOS on a FLASH component. FLASH BIOS allows easy upgrades without the need to replace an EPROM. The upgrade utility fits on a floppy diskette and provides the capability to save, verify, and update the system BIOS. The upgrade utility can be run from a hard drive or a network drive, but no memory managers can be installed during upgrades.

The latest upgrade utility and BIOS code are available in the public section of the iPAN bulletin board.

USING THE UPGRADE UTILITY

If the utility is obtained from iPAN, UNZIP the archive and copy the files to a bootable MS-DOS 3.3, 4.01, 5.0, or 6.0 bootable diskette. Reboot the system with the upgrade diskette in the bootable floppy drive and follow the directions in the easy to use menu-driven program.

RECOVERY MODE

In the unlikely event that a FLASH upgrade is interrupted catastrophically, it is possible the BIOS may be left in an unusable state. Recovering from this condition requires the following steps (be sure a power supply has been attached to the board, and a floppy drive is connected as drive A:):

- 1. Move jumper RV to the bottom position.
- 2. Install the bootable upgrade diskette into drive A:
- 3. Reboot the system.
- 4. Because of the small amount of code available in the non-erasable boot block area, no video is available to direct the procedure. The procedure can be monitored by listening to the speaker and looking at the floppy drive LED. When the system beeps and the floppy drive LED is lit, the system is copying the recovery code into the FLASH device. As soon as the drive LED goes off, the system can be turned off.
- 5. Reset jumper **RV** to the top position.
- 6. Leave the upgrade floppy in drive A: and turn the system on.
- 7. Continue with the original upgrade.

APPENDIX E - MEMORY MAP

Address Range (Deci-	Address Range (hex)	Size	Description
16384K-32768K	1000000-2000000	16384K	Extended Memory
16256K-16383K	FE0000-FFFFFF	128K	System & Video BIOS Copy
1024K-16255K	100000-FDFFFF	15232K	Extended Memory
960K-1023K	F0000-FFFFF	64K	AMI System BIOS
952K-959K	EE000-EFFFF	8K	FLASH Boot Block (Available as HIMEM)
948K-951K	ED000-EDFFF	4K	User FLASH Area (available as HIMEM if no user info is here)
928K-947K	E8000-ECFFF	20K	AMI Setup Program (disable via setup pre-boot only; with this
896K-927K	E0000-E7FFF	32K	Video BIOS (when installed)
800K-895K	C8000-DFFFF	96K	Available Hi DOS Memory(open to the ISA bus)
768K-799K	C000-C7FFF	32K	Optional VGA BIOS
736K-767K	B8000-BFFFF	32K	VGA Display Memory (not available to ISA bus)
704K-735K	B0000-B7FFF	32K	VGA & Mono Display Memory (HIMEM w/ QEMM)(not available to
640K-703K	A0000-AFFFF	64K	VGA Display Memory (not available to the ISA bus)
639K	9FC00-9FFFF	1K	Extended BIOS Data (moveable by QEMM, 386MAX)
512K-638K	80000-9FBFF	127K	Extended conventional
0K-511K	00000-7FFFF	512K	Conventional

Table E-1. Classic/PCI i486 Baby-AT Memory Map

APPENDIX F - I/O MAP

Address Range (hex)	Size (Decimal)	Description
0000 - 000F	16 bytes	SIO - DMA 1
0020 - 0021	2 bytes	SIO - Interrupt Controller 1
0040 - 0043	4 bytes	SIO - Timer 1
0048 - 004B	4 bytes	SIO - Timer 2
0060	1 byte	Keyboard Controller Data Byte
0061	1 byte	SIO - NMI, speaker control
0064	1 byte	Keyboard Controller, CMD & STATUS Byte
0070, bit 7	1 bit	SIO - Enable NMI
0070, bits 6:0	7 bits	SIO - Real Time Clock, Address
0071	1 byte	SIO - Real Time Clock, Data
0073	1 byte	Reserved - Board Configuration
0075	1 byte	Reserved - Board Configuration
0078	1 byte	SIO - BIOS Timer
0080 - 008F	16 bytes	SIO - DMA Page Register
00A0 - 00A1	2 bytes	SIO - Interrupt Controller 2
00C0 - 00DE	31 bytes	SIO - DMA 2
00F0	1 bytes	Reset Numeric Error
0170 - 0177	8 bytes	Secondary IDE Channel
01F0 - 01F7	8 bytes	Primary IDE Channel
0278 - 027B	4 bytes	Parallel Port 2
02F8 - 02FF	8 bytes	On-Board Serial Port 2
0376	1 byte	Secondary IDE Channel Command Port
0377	1 byte	Secondary IDE Channel Status Port
0378 - 037F	8 bytes	Parallel Port 1
03BC - 03BF	4 bytes	Parallel Port x
03E8 - 03EF	8 bytes	Serial Port 3
03F0 - 03F5	6 bytes	Floppy Channel 1
03F6	1 bytes	Primary IDE Channel Command Port
03F7 (Write)	1 byte	Floppy Channel 1 Command
03F7, bit 7	1 bit	Floppy Disk Change Channel 1
03F7, bits 6:0	7 bits	Primary IDE Channel Status Port
03F8 - 03FF	8 bytes	On-Board Serial Port 1
0CF8	1 byte	PCI Configuration Space Enable
0CF9	1 byte	De-turbo Mode Enable
C000 - C0FF	256 bytes	82424TX Configuration Registers
C200 - C2FF	256 bytes	82378IB Configuration Registers

Table F-1. Classic/PCI i486 Baby-AT I/O Address Map

APPENDIX G - BOARD INTERRUPTS & DMA

Interrupt Request	System Resource
NMI	Parity Error
0	Reserved, Interval Timer
1	Reserved, Keyboard buffer full
2	Reserved, Cascade interrupt from slave PIC
3	Serial Port 2
4	Serial Port 1
5	Parallel Port 2
6	Floppy
7	Parallel Port 1
8	Real Time Clock
9	User available
10	User available
11	User available
12	On-board Mouse Port if enabled, else user available
13	Reserved, Math coprocessor
14	IDE if enabled
15	User available

Table G-1. Classic/PCI i486 Baby-AT Interrupt Map

DMA Channel	Data Width	System Resource
0	8-or 16-bits	Open
1	8-or 16-bits	Open - Normally used for LAN
2	8-or 16-bits	Floppy
3	8-or 16-bits	IDE
4		Reserved - Cascade channel
5	16-bits	Open
6	16-bits	Open
7	16-bits	Open

Table G-2. Classic/PCI i486 Baby-AT DMA Map

APPENDIX H - CONNECTORS

AT STYLE KEYBOARD PORT (J8L1 = KEYBOARD)

Pin Number	Signal Name
1	Clock
2	Data
3	No Connect
4	Ground
5	Vcc (fused)

Table H-1. AT Style Keyboard Connector Pin Definition

OPTIONAL PS/2 STYLE KEYBOARD, MOUSE PORTS (J8L2 = KEYBOARD, J9L1 = MOUSE)

Pin Number	Signal Name
1	Data
2	No Connect
3	Ground
4	Vcc (fused)
5	Clock
6	No Connect

Table H-2. PS/2 Mouse and Keyboard Connector Pin Definition

TURBO LED CONNECTOR (J1A1)

Pin Number	Signal Name
1	PULL_UP_330
2	LED_TURBO-

Table H-3. Turbo LED Connector Pin Definition

HARD DRIVE LED CONNECTOR (J1A2)

Pin Number	Signal Name
1	PULL_UP_330
2	HD ACTIVE-
3	Key
4	PULL_UP_330

Table H-4 Fixed Disk LED Connector Pin Definition

KEY LOCK/POWER LED CONNECTOR (J1B1)

Pin Number	Signal Name
1	LED_PWR
2	Key
3	Ground
4	KEY LOCK
5	Ground

Table H-5. Key lock Connector Pin Definition

SPEAKER CONNECTOR (J1C1)

Pin Number	Signal Name
1	SPKR_DAT
2	Key
3	No Connect
4	+5V Vcc

Table H-6. Speaker Connector Pin Definition

TURBO SWITCH CONNECTOR (J1C1B)

Pin Number	Signal Name
1	TURBO
2	Ground
3	No Connect

Table H-7. Turbo Switch Connector Pin Definition

PRIMARY POWER CONNECTOR (J9K1)

Pin	Name	Function
1	PWRGD	Power Good
2	+5 V	+ 5 volts Vcc
3	+12 V	+ 12 volts
4	-12 V	- 12 volts
5	GND	Ground
6	GND	Ground
7	GND	Ground
8	GND	Ground
9	-5 V	-5 volts
10	+5 V	+ 5 volts Vcc
11	+5 V	+ 5 volts Vcc
12	+5 V	+ 5 volts Vcc

Table H-8. Power Connector Pin Definition

AUXILIARY (3.3V) POWER CONNECTOR (J4H1)

Pin	Name	Function
1	GND	Ground
2	GND	Ground
3	GND	Ground
4	+3.3 V	+ 3.3 volts
5	+3.3V	+ 3.3 volts
6	+3.3 V	+ 3.3 volts

Table H-9. 3.3V Power Connector Pin Definition

PARALLEL PORT (J7J1)

Signal Name	Pin Number	Pin Number	Signal Name
Strobe-	1	2	Auto Feed-
Data Bit 0	3	4	ERROR-
Data Bit 1	5	6	INIT-
Data Bit 2	7	8	SLCT IN-
Data Bit 3	9	10	Ground
Data Bit 4	11	12	Ground
Data Bit 5	13	14	Ground
Data Bit 6	15	16	Ground
Data Bit 7	17	18	Ground
ACK-	19	20	Ground
BUSY	21	22	Ground
PE (Paper End)	23	24	Ground
SLCT	25	26	No Connect

Table H-10. Printer Port Connector Pin Definition

SERIAL PORTS (J7L2 = COM1, J7L1 = COM2)

Signal Name	Pin Number	Pin Number	Signal Name
DCD (Data Carrier Detect)	1	2	DSR (Data Set Ready)
SIN- (Serial Input)	3	4	RTS (Request to Send)
SOUT- (Serial Output)	5	6	CTS (Clear to Send)
DTR (Data Terminal Ready)	7	8	RI (Ring Indicator)
Ground	9	10	No Connect

Table H-11. Serial Port Connectors Pin Definition

RESET CONNECTOR (J1B2)

Pin Number	Signal Name
1	RESET
2	Ground

Table H-12. Reset Switch Connector Pin Definition

FLOPPY CONNECTOR (J9F2)

Signal Name	Pin Number	Pin Number	Signal Name	
Ground	1	2	FDHDIN	
Ground	3	4	Reserved	
Key	5	6	FDEDIN	
Ground	7	8	Index-	
Ground	9	10	Motor Enable A-	
Ground	11	12	Drive Select B-	
Ground	13	14	Drive Select A-	
Ground	15	16	Motor Enable B-	
Ground	17	18	DIR-	
Ground	19	20	STEP-	
Ground	21	22	Write Data-	
Ground	23	24	Write Gate-	
Ground	25	26	Track 00-	
Ground	27	28	Write Protect-	
Ground	29	30	Read Data-	
Ground	31	32	Side 1 Select-	
Ground	33	34	Diskette Change-	

Table H-13. Floppy Disk Connector Pin Definition

IDE CONNECTOR (J9F3)

Signal Name	Pin Number	Pin Number	Signal Name
Reset IDE	1	2	Ground
Host Data 7	3	4	Host Data 8
Host Data 6	5	6	Host Data 9
Host Data 5	7	8	Host Data 10
Host Data 4	9	10	Host Data 11
Host Data 3	11	12	Host Data 12
Host Data 2	13	14	Host Data 13
Host Data 1	15	16	Host Data 14
Host Data 0	17	18	Host Data 15
Ground	19	20	Key
DRQ3	21	22	Ground
I/O Write-	23	24	Ground
I/O Read-	25	26	Ground
IOCHRDY	27	28	BALE
DACK3-	29	30	Ground
IRQ14	31	32	IOCS16-
Addr 1	33	34	Ground
Addr 0	35	36	Addr 2
Chip Select 0-	37	38	Chip Select 1-
Activity	39	40	Ground

Table H-14. IDE Connector Pin Definition

ISA CONNECTOR (J6G2, J6G1, J5G1, J4G1, J1G1)

Signal Name	Pin Number	Pin Number	Signal Name
GND	B1	A1	IOCHK-
RSTDRV	B2	A2	SD7
Vcc	В3	A3	SD6
IRQ9	B4	A4	SD5
-5V	B5	A5	SD4
DRQ2	В6	A6	SD3
-12V	В7	A7	SD2
0WS-	B8	A8	SD1
+12V	В9	A9	SD0
GND	B10	A10	IOCHRDY
SMEMW-	B11	A11	AEN
SMEMR-	B12	A12	SA19
IOW-	B13	A13	SA18
IOR-	B14	A14	SA17
DACK3-	B15	A15	SA16
DRQ3	B16	A16	SA15
DACK1-	B17	A17	SA14
DRQ1	B18	A18	SA13
REFRESH-	B19	A19	SA12
SYSCLK	B20	A20	SA12
IRQ7	B21	A21	SA10
IRQ6	B22	A22	SA9
IRQ5		A23	
IRQ4	B23	A23 A24	SA8 SA7
IRQ3	B24		
	B25	A25	SA6
DACK2-	B26	A26	SA5
TC	B27	A27	SA4
BALE	B28	A28	SA3
Vcc	B29	A29	SA2
OSC	B30	A30	SA1
GND	B31	A31	SA0
	KEY	KEY	00115
MEMCS16-	D1	C1	SBHE-
IOCS16-	D2	C2	LA23
IRQ10	D3	C3	LA22
IRQ11	D4	C4	LA21
IRQ12	D5	C5	LA20
IRQ15	D6	C6	LA19
IRQ14	D7	C7	LA18
DACK0-	D8	C8	LA17
DRQ0	D9	C9	MEMR-
DACK5-	D10	C10	MEMW-
DRQ5	D11	C11	SD8
DACK6-	D12	C12	SD9
DRQ6	D13	C13	SD10
DACK7-	D14	C14	SD11
DRQ7	D15	C15	SD12
Vcc	D16	C16	SD13
Master-	D17	C17	SD14
GND	D18	C18	SD15

Table H-15. ISA Connector Pin Definition

PCI CONNECTOR (J3H1.J2H1.J1H1)

Signal Name	Pin Number	Pin Number	Signal Name
GND	A1	B1	-12V
+12V	A2	B2	TCK
No Connect	A3	В3	GND
STDI	A4	B4	STD0
Vcc	A5	B5	Vcc
PCIINT3-	A6	B6	Vcc
PCIINT1-	A7	B7	PCIINT2-
Vcc	A8	B8	PCIINT4-
Reserved	A9	B9	No Connect
Vcc	A10	B10	Reserved
Reserved	A11	B11	No Connect
GND	A12	B12	GND
GND	A13	B13	GND
Reserved	A14	B14	Reserved
SPCIRST-	A15	B15	GND
Vcc	A16	B16	PCLKE
AGNT-	A10	B17	GND
GND	A18	B18	REQA-
Reserved	A19	B19	Vcc
	A19 A20	B20	AD31
AD30			
3.3V	A21	B21	AD29
AD28	A22	B22	GND
AD26	A23	B23	AD27
GND	A24	B24	AD25
AD24	A25	B25	3.3V
AD22 (IDSEL)	A26	B26	CBE3-
3.3V	A27	B27	AD23
AD22	A28	B28	GND
AD20	A29	B29	AD21
GND	A30	B30	AD19
AD18	A31	B31	3.3V
AD16	A32	B32	AD17
3.3V	A33	B33	CBE2-
FRAME-	A34	B34	GND
GND	A35	B35	IRDY-
TRDY-	A36	B36	3.3V
GND	A37	B37	DEVSEL-
STOP-	A38	B38	GND
3.3V	A39	B39	PLOCK-
SDONE	A40	B40	PERR-
SBO-	A41	B41	3.3V
GND	A42	B42	SERR-
PAR	A43	B43	3.3V
AD15	A44	B44	CBE1-
3.3V	A45	B45	AD14
AD13	A46	B46	GND
AD11	A47	B47	AD12
GND	A48	B48	AD10
AD9	A49	B49	GND
key	A50	B50	key
key	A51	B51	key
CBE0-	A52	B52	AD8
3.3V	A53	B53	AD7
AD6	A54	B54	3.3V
· · · · · ·	A55	B55	AD5

GND	A56	B56	AD3	
AD2	A57	B57	GND	
AD0	A58	B58	AD1	
Vcc	A59	B59	Vcc	
SREQ64-	A60	B60	SACK64-	
Vcc	A61	B61	Vcc	
Vcc	A62	B62	Vcc	

Table H-16. PCI Connector Pin Definition

APPENDIX I - BABY-AT CHASSIS SUPPLIERS

Axxion Group Corporation 11 B. Leigh Fisher El Paso, TX 79906 (915) 772-0088

Enlight Corporation, USA 345 Cloverleaf Drive, Unit 2B Baldwin Park, CA 91706 (818) 369-4709

Olsen Metal Products 1001 Crossroads Boulevard Seguin, TX 78155 (512) 379-2799

Suntek Corporation xxx xxx (xxx) xxx-xxxx

Kepro Corporation xxxx xxx (xxx) xxx-xxxx

APPENDIX J - ENVIRONMENTAL STANDARDS

Parameter	Condition	Specification
Temperature		
	Non-Operating	-40°C to +70°C
	Operating	+0°C to +55°C
Humidity		
	Non-Operating	92% Relative Humidity max. @ 36°C
	Operating	80% Relative Humidity max. @ 36°C
Altitude		
	Non-Operating	50,000 feet (15,240 meters)
	Operating	10,000 feet (3048 meters)
ESD		
	1.0kV	No Errors
	2.5kV	No Errors
	5.0kV	5% Soft Errors, 0% Hard Errors, No physical damage
	7.5kV	10% Soft Errors, 0% Hard Errors, No physical damage
	10.0kV	25% Soft Errors, 5% Hard Errors, No physical damage
	12.5kV	50% Soft, 10% Hard, No physical damage
	15.0kV	100% Soft, 25% Hard, No physical damage
	25.0kV	100% Soft, 100% Hard, No physical damage
Shock	Non-Operating	30.0G, 11ms, 1/2 sine

Table J-1. Environmental Standards

APPENDIX K - RELIABILITY DATA

This Mean-Time-Between-Failures (MTBF) data is calculated from predicted data @ 35C.

Classic/PCI i486 Baby-AT baseboard (BP5D60LP8)

xx,xxx hours

APPENDIX L - SOFTWARE DRIVER SUPPORT

TBD

APPENDIX M - QUALIFIED PERIPHERALS

TBD

APPENDIX N - CUSTOMER SUPPORT

The Classic/PCI i486 Baby-AT is backed by Intel's industry-leading support groups in the OEM Products and Services Division (OPSD), including IntelTechDirect™. OPSD can support many of your network integration and service needs, including worldwide integration and system repair services. IntelTechDirect provides the following 4 major services:

IPAN (INTEL PRODUCT ASSISTANCE NETWORK)

An electronic Bulletin board with current product information, demo software and more...

- Available worldwide through direct-dial
- Modem speeds up to 14.4k baud with standard software
- FLASH BIOS upgrade files
- Modem set at no parity, 8 data bits, 1 stop bit.

IPUB (INTEL PRODUCT UPDATE BULLETIN)

- Monthly Product updates available 24 hours a day from iPAN
- Official notification of engineering changes and technical data
- Easy information retrieval using Windows Help file format
- Intel platform system, board, and BIOS revision histories
- Hardware and software compatibility notes
- Documentation updates, spare parts and order information

IPALS (INTEL PHONE ACTION LINE SUPPORT)

A direct telephone support line backed by highly qualified and well trained technical personnel.

- Toll-free access to Intel support engineers for problem resolution
- Responses within 24 hours Monday-Friday
- Expert assistance geared to the special needs of OEMs and VARs

FAXBACK™

- Product descriptions and technical data sent to any fax machine from a touch-tone phone
- Information on End-of-Life products
- Available worldwide through direct dial at 916-356-3105

For information about IntelTechDirect please contact your local Intel Sales Representative.

APPENDIX O - PHYSICAL DIMENSIONS

BOARD

Length	xxx cm	10.5"
Width	xxx cm	9.1"

Table O-1. Board Outline Dimensions

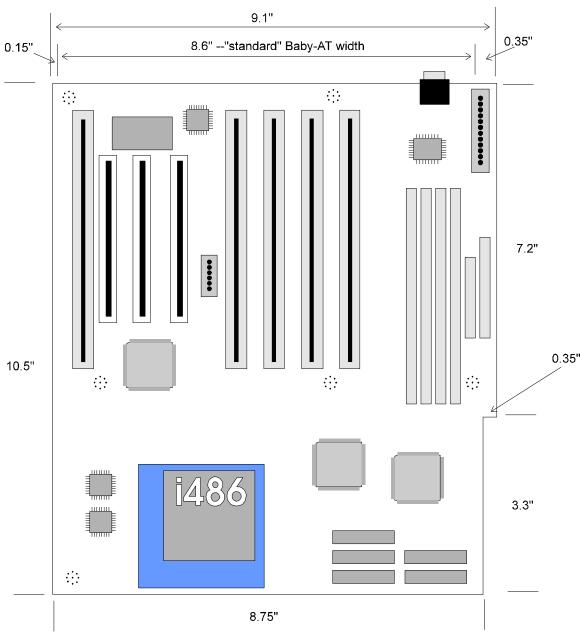


Figure O-1. Motherboard Dimensions

APPENDIX P - PRODUCT CODES

BOARDS

BP4S33ATC8 Classic/PCI i486SX/33 Baby-AT, 128K cache, 8M memory
BP4D33ATC8 Classic/PCI i486DX/33 Baby-AT, 128K cache, 8M memory
BP4D266ATC8 Classic/PCI i486DX2/66 Baby-AT, 128K cache, 8M memory

(All boards are bulk shipped in quantities of 10)

ACCESSORIES

Accessory kit includes:

DOCUMENTATION

The Classic/PCI i486 Baby-AT board ships with a product guide.